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We apply the negative dimensional integration method (NDIM) to three outstand-
ing gauges: Feynman, light-cone, and Coulomb gauges. Our aim is to show that
NDIM is a very suitable technique to deal with loop integrals, regardless of which
gauge choice that originated them. In the Feynman gauge we perform scalar two-loop
four-point massless integrals; in the light-cone gauge we calculate scalar two-loop
integrals contributing to two-point functions without any kind of prescriptions, since
NDIM can abandon such devices—this calculation is the first test of our prescription-
less method beyond one-loop order; and finally, for the Coulomb gauge we consider
a four-propagator massless loop integral, in the split-dimensional regularization con-
text. (© 2001 Academic Press
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1. INTRODUCTION

The perturbative approach to quantum field theory in any gauge deals with Feynt
diagrams, which can be expressedxglimensional integrals. The success of such a
approach is readily apparent from the comparison between the theoretical and experim
values for the electron’s anomalous magnetic moment, that is, by the qunﬁiié/(g -2
measure for the electron (see for instance [1]):

arhe = 1159652202(2.1)(27.1) x 10-12

1
aexp = 11596521884(4.3) x 10712, @)

This is the best motivation to study quantum field theory, since no physical theory
given such accuracy in any measurement. In other words, itis the very bestwe have up to
In Section 2 we discuss sample two-loop four-point functions, namely, on-st
double boxes with five and six massless covariant propagators; Section 3 is devote
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noncovariant gauges, namely the light-cone and the Coulomb ones. The integrals we ¢
for the former noncovariant gauge have seven propagators (two-loops) and the latter is a
loop having four propagators, which is complicated by the necessity to use split-dimensi
regularization (SDR). In the final Section 4, we present our concluding remarks.

2. FEYNMAN GAUGE: SCALAR TWO-LOOP FOUR-POINT MASSLESS INTEGRALS

Of course, covariant gauges are the most popular, inwhatwe could call the “gauge mat
[2]. Several methods were and are still developed to evaluate complicated Feynman
integrals, from the perspective of both analytic and numerical results [1, 3, 4], all in 1
context of dimensional regularization [5].

Our work is concerned with the application of the negative-dimensional integrati
method (NDIM). It is a technique which can be applied to any gauge, covariant or non
variant alike. The results are always expressed as hypergeometric series which have de
regions of convergence allowing us to study the referred diagrams or processes in spe
kinematical regions of external momenta and/or masses.

However, as life teaches us all, not everything in the NDIM method is peaches and cre
it has its drawback: the amazing number of series—in the case where one is conside
massless diagrams—which must be summed. When such sums are of Gaussian type
quite easy to write a small computer program that can do the job algebraically. Howe
when the series are of superior ordgr Fy, for p > 2, there are no known formulas which
can reduce it to a product of gamma functions for any value of its parameters. (The
exceptions as contemplated by theorems, such as Saalschutzian’s, when one of the num
parameters is negative, generally do not apply to our cases.) Despite this technical prot
NDIM has proven to be an excellent method [6—9] for computing loop integrals.

Inthe task of calculating perturbative Feynman diagrams, a question that arises quite ¢
is which is more difficult to handle, graphs with more loops or graphs with more legs? In «
point of view, i.e., in the context of NDIM, the greater the number of loops the heftier t
calculations needed to solve the problem. We will consider in this section a diagram wt
has both (great number of legs and loops, four and two, respectively): a scalar two-I
double-box integral where all the particles are massless and the external legs are on-¢

2.1. Double Box with Five and Six Propagators

Let us consider the diagram of Fig. 1. Consider as the generating functional for
negative-dimensional integral the Gaussian one, where all external legs are on-shell,

eb=/ﬂ%dWemku&—ﬁm—pf—ym—p—df

—0(q—1 — p)? —¢r? —w(g —r)?, ()
2\ D/2
- <’j\) exp{i(—ydms— BOGY) |, ®)

where(s, t) are the usual Mandelstam variables and wesusé + u = ¥m? = 0. Observe
that in the particular case wheke= 0 we recover the Gaussian integral for the diagram c
Fig. 2. We also definh =« + ap +aw + B0+ B+ Bwo+yv0 +yd+ yw+ dw +
0.
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FIG. 1. Double box with six propagators.

The usual technique reveals that there are thirteen sums and seven equations. Fro
combinatorics one can solve such constraints in 1716 different ways. Of course se\
systems have no solution—not even in the homogeneous case—and from our pre
works we know that some results ardold degenerate while others are related by analyti
continuation. The result for the integral in question is

BOX = /qu d°r@®»'@-p2@-p-p)*qg-r - p?HMQq-nN>" @)

b > sXitXe
— (—m)PiljIKIIMINIT (1 — op — D/2 5, (5
(=m)7i (1=ov /)6%0 v Yazazn ©

where “all” means{ X1, X2, Y1, Yo, Y3, Ya, Y5, Y6, Y7, Yg, Yg, Z,, Zz} and

BOX =BOX(, j,k,1,m,n)
must be understood artklta represents the system of constraints. The above express
can be expressed, in principle, as a seven-fold hypergeometric series, for which ther
three possibilities,

F(.zz %1, F(..|z1, and F(..|z27%1), (6)

wherez = —s/t. Some series with unit argument, if they are Gaussian can be summed

a—p r g—k—r

- . q-p-7 - .

FIG. 2. Double box with five propagators.
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TABLE |
Parameters of Hypergeometric FunctionssF,
Representing Box Integrals

Parameters 3F2({1}]2) 3F2({2}|2)
a —k —k
b -n -n
c —0p —oy
e 1+j—op 1+j—o0f
f 1+l -0y 1+1 -0}

However, a hypergeometric function is meaningful only if the series which defines it
convergent. It is easy to see that the first possibility above, thais,. |z, z*%, 1), cannot
satisfy this requirement of convergence and therefore we disregard it.

Among the 624 total solutions of the system of constraints we look for the simpl
solution, namely, the one in which we can sum the greatest number of series. It is
difficult to find it using computer facilities, and we get

BOX"C(i, j,k,I,m,n) = fu(i, j, k |, m, nzF({1}]2), @)

where the five parameters are quoted inthe Taltg i + j +k+1+m+n+ D, and

f1, .k, 1, m,n) = 7P A% (=jlop)(—I|op)(ob + D/2| — 20, — D/2)
x(—m|l +m+n+D/2)(i+j+k+m+D|—m—D/2)
x(+m+n+D|—1—-n—-D/2). (8)

Besides this one, we can have Appel’s, Lauricella’s, and even more complicated hy
geometric functions. Moreover,

r'x+y

Xly) = X)y = W
If we remember that the final result should be the sum of linearly independent se

[7, 10], we can rightfully ask if one is not missing two othgf, functions. According to
Luke and Slater [12], the differential equation fd¥, hasp linearly independent solutions,
so we would in principle expect in our case above a sum of three terms. On the o
hand, according to Narlund [13], if the difference between an upper parameter and a Ic
one is an integer number (which is our case above—see Table 1), then some series «
exist—we used this theorem in [7]. So, Eq. (7) is the final result for the referred integ
in the region whergz| < 1. The expression for the same graph outside this region can
obtained making the substitutions

s<t, jok |I<n 9)

so that we have anothgF, hypergeometric function as the result far > 1.
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Another solution for the Feynman integral can be written as a triple hypergeome
series,

—jYase)(M+ D/2|Ya6)(I + N+ D/2|Ys)
Y4|Y5|Y6'(1 + op — ] |Y456)

BOX; = nPtis] fgz(
Yi=0
y (+k+1+m+ D|Yas+ 2Ye)([i +1 + M+ n+ D|Yase)z s
A—j+1Ys6)(i + ] +k+m+ D|Ys6)(I + M+ n+ D|Yss6)
+(j <D, (10)

whereYjj.. =Y, +Y; +---and

fg = (=1|]))d + m+n+ Di)(op + D/2| — j — n — D/2)(—n|l +2n+ D/2)
x (i +j+K+m+Dl—m—D/2)(—=K|j + Kk —op)(—m|2m+ D/2). (11)

Obviously, the above series convergeizjf< 1, in addition to other possible conditions
on z. So there is an overlapping between the regions of converger8® af and 5O A3,
so that there is an analytic continuation formula which relates both. As far as we know
the pertinent literature there is not a known formula relating triple hypergeometric serie
simple ones.

We also have solutions written in terms of a four-fold series, i.e.,

(=1Y12479 (M 4+ D/2|Y147) (=i | Y1)
YUY Y (A4 op — Y1247 (L + | — 1| Y127)

o0
BOX, = ﬂDtlsab_l fa Z
Y, =0

y (+j+Kk+D/2IY)(i + ] +mM+n+ D|Yios+ 2Y7) 21247
(I'+m+n+ DY)

+( <, (12)
where
fa=(Cjhd+m+n+Dli+j—Dp+D/2| —k—1 —-D/2)(—m|2m + D/2)
x (=klk +1 = op)(—n|l +2n+ D/2). (13)

Observe that the two previous results are singular wiherl = integer, since we have
r'(j —horr( — j)inthe numerator. However, this singularity cancels out if one conside
exponents of propagators in the analytic regularization context, i.e., if we introduce [7,
for instancej = —1 + § and then expand the whole expression arauird0. Proceeding
in this way the pole ir§ cancels out.

Note that we have here reduction formulas which transform a hypergeometric func
defined by triple and four-fold series in a simpler function defined by a unique sum. Th
formulas are not in the textbooks on the subj#ds an original result

2.1.1. Double box with five propagatorsThe graph of Fig. 2, is a special case of the
previous one. In the Gaussian integrahust be zero, so in the final result we must merel
takei =0,

BOXAC(O, j, k,I,m,n) = (0, j, k1, m, n)3sF{2}|2), (14)
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where the parameters are listed in Table | and we defjre j + k+1 + m+n+ D and

f(0.j.k.1.m. n) = 7°t*)%(—joy)(~l|op)(0p, + D/2| — 20/, — D/2)
x(—m|l+m+n+D/2)(j +k+m+D|—m—D/2)
x(+m+n+D|—1—-n—-D/2). (15)

We can proceed with the same substitutions as in (9) to obtain the result outside the re
|z < 1.

Finally, when all the exponents are equal to minus onesfaeollapses into a Gaussian
2F1 which can be written as an elementary function.

The results foBO X3 andBO X, for this special casé@ = 0) are hypergeometric series
representations for the integral in question. We note thaBt®a’,, we had a Pochhammer
(—i]Y1), which fori = 0 means automatically; = 0, so that the four-fold sum now be-
comes a triple sum, sa§OX;. But this is exactly equal to the previolO X3, which
means the result is degenerate and the final result for the Feynman integral is the t
series representation f&OX3(0, j, k, I, m, n).

3. NONCOVARIANT GAUGES: LIGHT-CONE AND COULOMB

Recently there have been many works on noncovariant gauges, namely, light-cone
15], Coulomb [16], and radial and axial gauges [17]. Despite the fact that they are no
popular as covariant ones, they have some important features which can help our stud
understanding of certain physical problems.

The light-cone gauge, as far as we know, is the only one where certain supersym
ric theories can be shown to be UV finite and that possesses a local Nicolai map [
Moreover, ghosts decouple from physical particles and we are left with a reduced n
ber of diagrams to work with. On the other hand, the price to pay seemed to be h
since the gauge boson propagator did generate spurious poles in physical amplitudes
problem was overcome when Mandelstam and Leibbrandt [19] introcactedcprescrip-
tions to treat them (there are also other causal prescriptions which can be implemel
proposed by Pimentel and Suzuki [20], known as causal Cauchy principal value pres
tion.) However, the famous ML-prescription necessarily forces one to use partial fracti
ing tricks and integration over components, which make the calculations rather invol
[21].

The negative-dimensional approach can avoid all devices such as the use of prescrif
and partial fractionings and provide physically acceptable results, i.e., causality pres
ing results. The calculation we will present is the very first test beyond one-loop or
without invoking ML-prescription. This very fact led us to call NDIM a prescriptionles
method [8]. Furthermore, integration over components and partial fractioning tricks car
completely abandoned, as can parametric integrals. The important point to note [8] is
the dual light-like 4-vecton’; is necessary in order to span the needed four-dimensior
space [18, 22]. Without this dual light-like 4-vector, that is, a theory with only one
degree violation of covariance, the calculations lead to unphysical results (i.e., they bl
causality) [6].

The second noncovariant gauge we deal with in this paper is the Coulomb gauge.
potential between quarks and studies on confinement are easily performed in this g
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[15, 16]. In addition, the ghost propagator has no pole in this gauge! As in the lig
cone gauge, a theory constrained in the Coulomb gauge also has problems with the t
propagator. Inthe former, loop integrals generated aditional poles; in the latter, such inte
are not even defined [23] since they have the form

dqud?
/ qu 9 (16)

Such objects are called energy integrals. Doust and Taylor [23] presented a solt
for this problem in a form of a interpolating gauge (between Feynman and Coulorn
Leibbrandt and co-workers [24] presented a different approach, a procedure they c:
split-dimensional regularizatioSDR), which introduces two regulating parameters, on
for the energy component and another for the 3-momentum one. So, the measure in
becomes

d°q = dgd®1q 2% dPq = d*q.d“q (17)

in Euclidean space.

Here we demonstrate that NDIM can also deal with Coulomb gauge loop integrals
long as we make use of SDR. In this work we propose to apply NDIM to scalar integr
with four massless propagators. Our results are given in terms of hypergeometric si
involving external momenta, exponents of propagators, and regulating parametets.

3.1. The Light-Cone Gauge

So far, we have tested our NDIM for integrals pertaining to the one-loop class. N
we apply this technology to some massless two-loop integrals. Let us consider an inte
studied by Leibbrandt and Nyeo [21], since they did not present the full result for it:

k2
q2(q — k2k — p2k-ny(g-n)’

Cs = /qude (18)
In their calculation the ML-prescription must be understood. However, in the NDIM conts
the key point is to introduce the dual vectyy to span the needed space [8, 18, 22]. If we
do not consider it, our result will violate causality, giving the Cauchy principal value of tl
integral in question, as we concluded in [6].

The advantage of NDIM over other methods is that it can consider lots of integrals i
single calculation. Our aim to is perform

N = / d®qdPky (k) (@) (@ — kpX(ky — P2 (k- W)™ (@ - M)3(ky - 1% (19)
We will carry out this integral and then present results for special cases, includ
Leibbrandt and Nyeo'€s, wherei = —1, r = 0, and the other exponents equal minus
one. Observe that the integral must be considered as a function of external momen

exponents of propagators, and dimension;

N =N, j, kI, mr,s; P, D). (20)
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Here P representgp?, pt+, p~, 5(n-n*)), and we adopt the usual notation of light-cone
gauge [2].

Our starting point is the generating functional for our negative-dimensional integrals
G = [ d°qdk exp-ak? - f? - y(@ ~ k) ~ 01k — pY’
—¢K-n) —o(-n—nk-nM], (21)

which after a little bit of algebra allows momentum integration, which yields

72\ P2 1 1
GN=(7> exp{x{—glpz—gz(p-n)—gs(p~n*)+94(§n-n*>]}’ (22)

where

gL=@f+ay+By)0. G=(Bé+yo+yd)d. ds= B+, g4=n%,

andx = o + ay + By + B6 + y6.
Taylor expanding the exponentials we obtain

. > 8
N = (=2 D)itjkilimirtsir (1 — o, — D/2) Z 1

all=0 . Xg!Y1!Yo! V3!

(pz)xlzs(p+)x456(p*)x73 n-n* Y123
* Zi!... Zs! <_ 2 ) ’

(23)

whereo, =i+ j+k+1+m+r +s+ D ands represents the system of constraints
(8 x 16) for the negative-dimensional integral. At the end of the day we have 12,8
possible solutions for such a system! Most of them, 9142, have no solution, while 3’
present solutions which can be written as hypergeometric series. Of course several of 1
will provide the same series representation; these solutions we call degenerate.
We present a result for the referred integral as a double hypergeometric series,
N = 7P%.P, i (0n + D/2\Z45)(i + ] + K+ M+ S+ D|Z4s)(D/2+ kIZa)
720 Z)'Z5\ (140 + j + k+on+ D|Z4s)(j + k+ s+ D|Zss)

L (+5+D/2Zs)i + ] + K+ + D|Z45)<p2n-n*)z“5

— 24
A+i+j+k+m+r+s+ D|Zys) 2ptp- (24)
where
fo=(ml—9s)(—i —j—k—D/2| —on—D/2)(j +K+s+D|i —s+r)
» (—llk+1+D/2)(—k| — j — D/2)(—m|j + m+s+ D/2)
Al+r|—i—j—k—m-r—-s—D)
x(—j|l—i—k—=m-r —s—D) (25)
are the Pochhammer symbols and
- n-n* on~l
Py = (p?) IR (phylrmesmen(prylren (—2 ) : (26)
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Now we can consider the special case<(1, j =k =1 =m =s=—1,r = 0), studied
in [21],

o [(5— 2D)I(D ~ DI'(D/2~ HI'2~ D/2T(D/2-2) 5 5 5
ra-o/2r(b -3 (P

« (p+)1—D(p—)3—D(n'n*>D_3 i (3D /2 — 4 Z4s)

Nsczn

2 57 0 241 Z5(2D — 4| Zss)
(D/2 = 1/Z4)(D/2 — 2|Z5)(D — 1|Zss)  pPn - n*\ %
X . (27)
(D — 2|Z45) ptp-

Observe that it exibits a double pole, as stated by Leibbrandt and Nyeo [21].

3.2. The Coulomb Gauge

We will present the full calculation of an integral which has four propagators,

3G, . kom) = / d%(@?)' (@ — P2 (g + P, (28)

where to regulate the possible divergences originated by the energy component, SDR
be understood, namely,

dPq = d”q,d“q, (29)

whereD = p + .
The generating functional for our negative-dimensional integrals is the Gaussian-
integral

G. = /qu exp[-aq® — B(d + p)* — ya® — 6(d + p)?], (30)

which can be easily integrated to give

nP/2 af (a+y)B+0) ,
= - - Tp?. 1
Ge VYL exp( » 94) exp{ " P (31)

There are results given by double, triple, four-fold, and five-fold hypergeometric sel
in the variablep?/ p3 or its inverse.

We will present two such hypergeometric series representations. The first one is a f
fold series,

(=1 X123 (] + M+ D/2|X34) (pZ)X1234

X1 X5 X3! X! 2

(i, J, K, m) = Cali, j kom) D 5
4

Xi=0
(DA + j +m+ p/2[X3 = X12)(—M[X2)
A+ j+k+m+ D/2|Xzs)
y (=] = p/2| X1 = X3)(K+ ©/2| X124)
(1—i—p/2|X120)
+ (i < j, k< m)), (32)
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where

Cali. j.k.m) = 7%2(pd) (pA)™ ' (=] | — p/2(~] — M= p/2| — k- w/2)
x (—k|2Zk+ w/2)(j +k+m+ D/24+ w/2| — Kk — w/2), (33)

withoe =i+ j+k+m+D/2.
The second is a five-fold hypergeometric series,

(=i — ] — p/2|12X1 + X2345)
X! X X3 Xy X!

(i, j, k, m) = Cs(i, j,k,m) >
X; =0

x (p_2> 2tXas (—1)%s(M + /2| X1349)
ps (L+K+m+ w/2|X145)
(K + /2| X1245)

x : : , (34)
A—-J—p/2X35) L =i — p/2|X124)

where

Cs(i, . k. m) = 2 2/2(p2) IR0 i 4§ 4 p/2) (=i + |+ p/2)
% (—KIK + M + 0/2) (—mK + M+ w/2)( + | + pl — 0c — p/2)
x (K+mM+w| —oc— w/2). (35)

Observe that the above result is also symmetri@ i j, k <> m), which means in the
loop integralg” — g~ + p*.

Another important point to observe is that the final result must be a sum of linea
independent hypergeometric series [6, 7]. The above fivefold selig@ppears only
once whereagd, is degenerate since several systems give its two hypergeometric fu
tions. This must never be forgotten if one wants to apply NDIM to more complicated d
grams which can in principle generate even more involved hypergeometric series repre:
ations.

Moreover, the above expressionk, and Js, are related by direct analytic continua-
tion, since both are convergent fgp?/pZ| < 1. When one is considering simple hy-
pergeometric function, several formulas are known; on the other hand, for rather c
plicated hypergeometric series, such as the ones we obtained with four- and five
series, there are very few such formulas. NDIM can fill this gap, since it is the or
method which provides hypergeometric series representations for Feynman loop integ
in different kinematical regions, and related by analytic continuation either directly or |
directly.

The above hypergeometric series (only the series, not the factdsrsapd Js, can be
written as generalized hypergeometric functions [12] of four and five variables,

go0000[(-1 1111 D, (j+M+D/2:00, LA+ +m+p/2:~1,-1.1,0
206,0:0,0 A+ j+k+m+D/2:00,1,1)

(-m:0,1,0,0)
(1—i—-p/2:1,101)

X, X, —X, x,} (36)
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and
(mi—j—p/2:21,1,11),(M+w/2:1,0,1,1,1)
1l+k+m+w/2:1,0,0,1,1),1—-j—p/2:1,0,1,0,1)

(K+w/2:11,0,1,1)
(1—i—p/2:1,1,0,1,0

X2, X, X, X, —x} , (37)
wherex = p?/p3.

4. CONCLUSION

The technique of Feynman parametrization can of course be used to perform loop |
grals in different gauges but it is very difficult to perform parametric integrals for arbitra
exponents of propagators. This is not so with NDIM, for carrying loop integrals out wi
particular exponents is as easy as dealing with arbitrary ones—besides, one can
across singularities which depend on them and not on dimerBiohhis fact is very
important when studying light-cone gauge Feynman integrals, because one could ha
handle products such &g*)2[(q — p)*]®°, with a andb being negative. NDIM can cal-
culate all of them simultaneously, but if one chooses partial fractioning tricks then he/
will be forced to carry out each integral separately. Besides usual covariant integrals
the trickier light-cone gauge ones, NDIM was probed into the Coulomb gauge, whel
procedure—introduced by Leibbrandt and co-workers—cadd-dimensional regular-
izationis needed in order to render the energy integrals well-defined.

In this paper, we studied Feynman loop integrals pertaining to three outstanding gat
the usual, and more popular, covariant Feynman gauge and two of the trickiest nol
variant gauges, the light-cone and the Coulomb ones. Our results are given in tern
hypergeometric functions and in the dimensional regularization context.
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