
Journal of Computational Physics168,207–218 (2001)

doi:10.1006/jcph.2000.6694, available online at http://www.idealibrary.com on

Loop Integrals in Three Outstanding Gauges:
Feynman, Light-Cone, and Coulomb

Alfredo T. Suzuki and Alexandre G. M. Schmidt
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We apply the negative dimensional integration method (NDIM) to three outstand-
ing gauges: Feynman, light-cone, and Coulomb gauges. Our aim is to show that
NDIM is a very suitable technique to deal with loop integrals, regardless of which
gauge choice that originated them. In the Feynman gauge we perform scalar two-loop
four-point massless integrals; in the light-cone gauge we calculate scalar two-loop
integrals contributing to two-point functions without any kind of prescriptions, since
NDIM can abandon such devices—this calculation is the first test of our prescription-
less method beyond one-loop order; and finally, for the Coulomb gauge we consider
a four-propagator massless loop integral, in the split-dimensional regularization con-
text. c© 2001 Academic Press
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1. INTRODUCTION

The perturbative approach to quantum field theory in any gauge deals with Feynman
diagrams, which can be expressed asD-dimensional integrals. The success of such an
approach is readily apparent from the comparison between the theoretical and experimental
values for the electron’s anomalous magnetic moment, that is, by the quantitya = 1

2(g− 2)
measure for the electron (see for instance [1]):

aThe= 1159652201.2(2.1)(27.1)× 10−12

aExp= 1159652188.4(4.3)× 10−12.
(1)

This is the best motivation to study quantum field theory, since no physical theory has
given such accuracy in any measurement. In other words, it is the very best we have up to now.

In Section 2 we discuss sample two-loop four-point functions, namely, on-shell
double boxes with five and six massless covariant propagators; Section 3 is devoted to
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noncovariant gauges, namely the light-cone and the Coulomb ones. The integrals we study
for the former noncovariant gauge have seven propagators (two-loops) and the latter is a one-
loop having four propagators, which is complicated by the necessity to use split-dimensional
regularization (SDR). In the final Section 4, we present our concluding remarks.

2. FEYNMAN GAUGE: SCALAR TWO-LOOP FOUR-POINT MASSLESS INTEGRALS

Of course, covariant gauges are the most popular, in what we could call the “gauge market”
[2]. Several methods were and are still developed to evaluate complicated Feynman loop
integrals, from the perspective of both analytic and numerical results [1, 3, 4], all in the
context of dimensional regularization [5].

Our work is concerned with the application of the negative-dimensional integration
method (NDIM). It is a technique which can be applied to any gauge, covariant or nonco-
variant alike. The results are always expressed as hypergeometric series which have definite
regions of convergence allowing us to study the referred diagrams or processes in specific
kinematical regions of external momenta and/or masses.

However, as life teaches us all, not everything in the NDIM method is peaches and cream;
it has its drawback: the amazing number of series—in the case where one is considering
massless diagrams—which must be summed. When such sums are of Gaussian type, it is
quite easy to write a small computer program that can do the job algebraically. However,
when the series are of superior order,p+1Fp, for p ≥ 2, there are no known formulas which
can reduce it to a product of gamma functions for any value of its parameters. (The few
exceptions as contemplated by theorems, such as Saalschutzian’s, when one of the numerator
parameters is negative, generally do not apply to our cases.) Despite this technical problem,
NDIM has proven to be an excellent method [6–9] for computing loop integrals.

In the task of calculating perturbative Feynman diagrams, a question that arises quite often
is which is more difficult to handle, graphs with more loops or graphs with more legs? In our
point of view, i.e., in the context of NDIM, the greater the number of loops the heftier the
calculations needed to solve the problem. We will consider in this section a diagram which
has both (great number of legs and loops, four and two, respectively): a scalar two-loop
double-box integral where all the particles are massless and the external legs are on-shell.

2.1. Double Box with Five and Six Propagators

Let us consider the diagram of Fig. 1. Consider as the generating functional for our
negative-dimensional integral the Gaussian one, where all external legs are on-shell,

Gb =
∫

dDq dDr exp [−αq2− β(q − p)2− γ (q − p− p′)2

− θ(q − r − p1)
2− φr 2− ω(q − r )2], (2)

=
(
π2

3

)D/2

exp

[
1

3
(−γφωs− βθφt)

]
, (3)

where(s, t) are the usual Mandelstam variables and we uses+ t + u = 6m2
i = 0. Observe

that in the particular case whereα = 0 we recover the Gaussian integral for the diagram of
Fig. 2. We also define3 = αθ + αφ + αω + βθ + βφ + βω + γ θ + γφ + γω + φω +
θφ.
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FIG. 1. Double box with six propagators.

The usual technique reveals that there are thirteen sums and seven equations. From the
combinatorics one can solve such constraints in 1716 different ways. Of course several
systems have no solution—not even in the homogeneous case—and from our previous
works we know that some results aren-fold degenerate while others are related by analytic
continuation. The result for the integral in question is

BOX =
∫

dDq dDr (q2)i (q − p)2 j (q − p− p′)2k(q − r − p1)
2l (r 2)m(q − r )2n (4)

= (−π)Di ! j !k!l !m!n!0(1− σb − D/2)
∞∑

all=0

sX1t X2

X1!X2!Y1! . . .Y9!Z1!Z2!
δ, (5)

where “all” means{X1, X2,Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8,Y9, Z1, Z2} and

BOX = BOX (i, j, k, l ,m, n)

must be understood anddelta represents the system of constraints. The above expression
can be expressed, in principle, as a seven-fold hypergeometric series, for which there are
three possibilities,

F(. . . |z, z−1, 1), F(. . . |z, 1), and F(. . . |z−1, 1), (6)

wherez= −s/t . Some series with unit argument, if they are Gaussian can be summed up.

FIG. 2. Double box with five propagators.
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TABLE I

Parameters of Hypergeometric Functions3F2

Representing Box Integrals

Parameters 3F2({1}|z) 3F2({2}|z)

a −k −k
b −n −n
c −σb −σ ′b
e 1+ j − σb 1+ j − σ ′b
f 1+ l − σb 1+ l − σ ′b

However, a hypergeometric function is meaningful only if the series which defines it is
convergent. It is easy to see that the first possibility above, that is,F(. . . |z, z−1, 1), cannot
satisfy this requirement of convergence and therefore we disregard it.

Among the 624 total solutions of the system of constraints we look for the simplest
solution, namely, the one in which we can sum the greatest number of series. It is not
difficult to find it using computer facilities, and we get

BOX AC(i, j, k, l ,m, n) = f1(i, j, k, l ,m, n)3F2({1}|z), (7)

where the five parameters are quoted in the Table I,σb = i + j + k+ l +m+ n+ D, and

f1(i, j, k, l ,m, n) = πD(t2)σb(− j |σb)(−l |σb)(σb + D/2| − 2σb − D/2)

× (−m|l +m+ n+ D/2)(i + j + k+m+ D| −m− D/2)

× (l +m+ n+ D| − l − n− D/2). (8)

Besides this one, we can have Appel’s, Lauricella’s, and even more complicated hyper-
geometric functions. Moreover,

(x|y) ≡ (x)y = 0(x + y)

0(x)
.

If we remember that the final result should be the sum of linearly independent series
[7, 10], we can rightfully ask if one is not missing two other3F2 functions. According to
Luke and Slater [12], the differential equation forpFq hasp linearly independent solutions,
so we would in principle expect in our case above a sum of three terms. On the other
hand, according to Nørlund [13], if the difference between an upper parameter and a lower
one is an integer number (which is our case above—see Table I), then some series do no
exist—we used this theorem in [7]. So, Eq. (7) is the final result for the referred integral
in the region where|z| < 1. The expression for the same graph outside this region can be
obtained making the substitutions

s↔ t, j ↔ k, l ↔ n (9)

so that we have another3F2 hypergeometric function as the result for|z| > 1.
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Another solution for the Feynman integral can be written as a triple hypergeometric
series,

BOX3 = π Dt j sσb− j f3

∞∑
Yi=0

(− j |Y456)(m+ D/2|Y46)(l + n+ D/2|Y5)

Y4!Y5!Y6!(1+ σb − j |Y456)

× (i + k+ l +m+ D|Y45+ 2Y6)(i + l +m+ n+ D|Y456)zY456

(1− j + l |Y56)(i + j + k+m+ D|Y46)(l +m+ n+ D|Y456)

+ ( j ↔ l ), (10)

whereYi j ··· ≡ Yi + Yj + · · · and

f3 = (−l | j )(l +m+ n+ D|i )(σb + D/2| − j − n− D/2)(−n|l + 2n+ D/2)

× (i + j + k+m+ D| −m− D/2)(−k| j + k− σb)(−m|2m+ D/2). (11)

Obviously, the above series converges if|z| < 1, in addition to other possible conditions
on z. So there is an overlapping between the regions of convergence ofBOX andBOX3,
so that there is an analytic continuation formula which relates both. As far as we know, in
the pertinent literature there is not a known formula relating triple hypergeometric series to
simple ones.

We also have solutions written in terms of a four-fold series, i.e.,

BOX4 = π Dtl sσb−l f4

∞∑
Yi=0

(−l |Y1247)(m+ D/2|Y147)(−i |Y1)

Y1!Y4!Y7!Y2!(1+ σb − l |Y1247)(1+ j − l |Y127)

× (i + j + k+ D/2|Y2)(i + j +m+ n+ D|Y124+ 2Y7)zY1247

(l +m+ n+ D|Y147)

+ ( j ↔ l ), (12)

where

f4 = (− j |l )(l +m+ n+ D|i + j − l )(σb + D/2| − k− l − D/2)(−m|2m+ D/2)

× (−k|k+ l − σb)(−n|l + 2n+ D/2). (13)

Observe that the two previous results are singular whenj − l = integer, since we have
0( j − l ) or0(l − j ) in the numerator. However, this singularity cancels out if one considers
exponents of propagators in the analytic regularization context, i.e., if we introduce [7, 11]
for instancej = −1+ δ and then expand the whole expression aroundδ = 0. Proceeding
in this way the pole inδ cancels out.

Note that we have here reduction formulas which transform a hypergeometric function
defined by triple and four-fold series in a simpler function defined by a unique sum. These
formulas are not in the textbooks on the subject.It is an original result.

2.1.1. Double box with five propagators.The graph of Fig. 2, is a special case of the
previous one. In the Gaussian integralα must be zero, so in the final result we must merely
takei = 0,

BOX AC(0, j, k, l ,m, n) = f (0, j, k, l ,m, n)3F2({2}|z), (14)
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where the parameters are listed in Table I and we defineσ ′b = j + k+ l +m+ n+ D and

f (0, j, k, l ,m, n) = π D(t2)σ
′
b(− j |σ ′b)(−l |σ ′b)(σ ′b + D/2| − 2σ ′b − D/2)

× (−m|l +m+ n+ D/2)( j + k+m+ D| −m− D/2)

× (l +m+ n+ D| − l − n− D/2). (15)

We can proceed with the same substitutions as in (9) to obtain the result outside the region
|z| < 1.

Finally, when all the exponents are equal to minus one, the3F2 collapses into a Gaussian

2F1 which can be written as an elementary function.
The results forBOX3 andBOX4 for this special case(i = 0) are hypergeometric series

representations for the integral in question. We note that forBOX4, we had a Pochhammer
(−i |Y1), which for i = 0 means automaticallyY1 = 0, so that the four-fold sum now be-
comes a triple sum, sayBOX ′3. But this is exactly equal to the previousBO X3, which
means the result is degenerate and the final result for the Feynman integral is the triple
series representation forBOX3(0, j, k, l ,m, n).

3. NONCOVARIANT GAUGES: LIGHT-CONE AND COULOMB

Recently there have been many works on noncovariant gauges, namely, light-cone [14,
15], Coulomb [16], and radial and axial gauges [17]. Despite the fact that they are not so
popular as covariant ones, they have some important features which can help our study and
understanding of certain physical problems.

The light-cone gauge, as far as we know, is the only one where certain supersymmet-
ric theories can be shown to be UV finite and that possesses a local Nicolai map [18].
Moreover, ghosts decouple from physical particles and we are left with a reduced num-
ber of diagrams to work with. On the other hand, the price to pay seemed to be high,
since the gauge boson propagator did generate spurious poles in physical amplitudes. This
problem was overcome when Mandelstam and Leibbrandt [19] introducedad hocprescrip-
tions to treat them (there are also other causal prescriptions which can be implemented,
proposed by Pimentel and Suzuki [20], known as causal Cauchy principal value prescrip-
tion.) However, the famous ML-prescription necessarily forces one to use partial fraction-
ing tricks and integration over components, which make the calculations rather involved
[21].

The negative-dimensional approach can avoid all devices such as the use of prescriptions
and partial fractionings and provide physically acceptable results, i.e., causality preserv-
ing results. The calculation we will present is the very first test beyond one-loop order
without invoking ML-prescription. This very fact led us to call NDIM a prescriptionless
method [8]. Furthermore, integration over components and partial fractioning tricks can be
completely abandoned, as can parametric integrals. The important point to note [8] is that
the dual light-like 4-vectorn∗µ is necessary in order to span the needed four-dimensional
space [18, 22]. Without this dual light-like 4-vector, that is, a theory with only one-
degree violation of covariance, the calculations lead to unphysical results (i.e., they break
causality) [6].

The second noncovariant gauge we deal with in this paper is the Coulomb gauge. The
potential between quarks and studies on confinement are easily performed in this gauge
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[15, 16]. In addition, the ghost propagator has no pole in this gauge! As in the light-
cone gauge, a theory constrained in the Coulomb gauge also has problems with the boson
propagator. In the former, loop integrals generated aditional poles; in the latter, such integrals
are not even defined [23] since they have the form∫

dq4d3q
q2

. (16)

Such objects are called energy integrals. Doust and Taylor [23] presented a solution
for this problem in a form of a interpolating gauge (between Feynman and Coulomb).
Leibbrandt and co-workers [24] presented a different approach, a procedure they called
split-dimensional regularization(SDR), which introduces two regulating parameters, one
for the energy component and another for the 3-momentum one. So, the measure in SDR
becomes

dDq = dq4dD−1q
sdr→ dDq = dρq4dωq (17)

in Euclidean space.
Here we demonstrate that NDIM can also deal with Coulomb gauge loop integrals, as

long as we make use of SDR. In this work we propose to apply NDIM to scalar integrals
with four massless propagators. Our results are given in terms of hypergeometric series
involving external momenta, exponents of propagators, and regulating parametersω andρ.

3.1. The Light-Cone Gauge

So far, we have tested our NDIM for integrals pertaining to the one-loop class. Now
we apply this technology to some massless two-loop integrals. Let us consider an integral
studied by Leibbrandt and Nyeo [21], since they did not present the full result for it:

C3 =
∫

dDqdDk
k2

q2(q − k)2(k− p)2(k · n)(q · n) . (18)

In their calculation the ML-prescription must be understood. However, in the NDIM context
the key point is to introduce the dual vectorn∗µ to span the needed space [8, 18, 22]. If we
do not consider it, our result will violate causality, giving the Cauchy principal value of the
integral in question, as we concluded in [6].

The advantage of NDIM over other methods is that it can consider lots of integrals in a
single calculation. Our aim to is perform

N =
∫

dDqdDk1
(
k2

1

)i
(q2) j (q − k1)

2k(k1− p)2l (k1 · n)m(q · n)s(k1 · n∗)r . (19)

We will carry out this integral and then present results for special cases, including
Leibbrandt and Nyeo’sC3, wherei = −1, r = 0, and the other exponents equal minus
one. Observe that the integral must be considered as a function of external momentum,
exponents of propagators, and dimension:

N = N (i, j, k, l ,m, r, s; P, D). (20)
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Here P represents(p2, p+, p−, 1
2(n · n∗)), and we adopt the usual notation of light-cone

gauge [2].
Our starting point is the generating functional for our negative-dimensional integrals,

GN =
∫

dDqdDk exp[−αk2− βq2− γ (q − k)2− θ(k− p)2

−φ(k · n)− ω(q · n)− η(k · n∗)], (21)

which after a little bit of algebra allows momentum integration, which yields

GN =
(
π2

λ

)D/2

exp

{
1

λ

[
−g1 p2− g2(p · n)− g3(p · n∗)+ g4

(
1

2
n · n∗

)]}
, (22)

where

g1 = (αβ + αγ + βγ )θ, g2 = (βφ + γω + γφ)θ, g3 = (β + γ )ηθ, g4 = ηg2

θ
,

andλ = αβ + αγ + βγ + βθ + γ θ.
Taylor expanding the exponentials we obtain

N = (−π D)i ! j !k!l !m!r !s!0(1− σn − D/2)
∞∑

all=0

δ

X1! . . . X8!Y1!Y2!Y3!

× (p
2)X123(p+)X456(p−)X78

Z1! . . . Z5!

(
−n · n∗

2

)Y123

, (23)

whereσn = i + j + k+ l +m+ r + s+ D and δ represents the system of constraints
(8× 16) for the negative-dimensional integral. At the end of the day we have 12,870
possible solutions for such a system! Most of them, 9142, have no solution, while 3728
present solutions which can be written as hypergeometric series. Of course several of these
will provide the same series representation; these solutions we call degenerate.

We present a result for the referred integral as a double hypergeometric series,

N = π D fn Pn

∞∑
Z j=0

(σn + D/2|Z45)(i + j + k+m+ s+ D|Z45)(D/2+ k|Z4)

Z4!Z5!(1+ i + j + k+ σn + D|Z45)( j + k+ s+ D|Z45)

× ( j + s+ D/2|Z5)(i + j + k+ r + D|Z45)

(1+ i + j + k+m+ r + s+ D|Z45)

(
p2n · n∗
2p+p−

)Z45

, (24)

where

fn = (−m| − s)(−i − j − k− D/2| − σn − D/2)( j + k+ s+ D|i − s+ r )

× (−l |k+ l + D/2)(−k| − j − D/2)(−m| j +m+ s+ D/2)

(1+ r | − i − j − k−m− r − s− D)

× (− j | − i − k−m− r − s− D) (25)

are the Pochhammer symbols and

Pn = (p2)σn+i+ j+k+D(p+)l+m+s−σn(p−)l+r−σn

(
n · n∗

2

)σn−l

. (26)
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Now we can consider the special case (i = 1, j = k = l = m= s= −1, r = 0), studied
in [21],

NSC= π D 0(5− 2D)0(D − 1)0(D/2− 1)0(2− D/2)0(D/2− 2)

0(1− D/2)0(D − 3)
(p2)2D−5

× (p+)1−D(p−)3−D

(
n · n∗

2

)D−3 ∞∑
Z4,Z5=0

(3D/2− 4|Z45)

Z4!Z5!(2D − 4|Z45)

× (D/2− 1|Z4)(D/2− 2|Z5)(D − 1|Z45)

(D − 2|Z45)

(
p2n · n∗
p+p−

)Z45

. (27)

Observe that it exibits a double pole, as stated by Leibbrandt and Nyeo [21].

3.2. The Coulomb Gauge

We will present the full calculation of an integral which has four propagators,

J(i, j, k,m) =
∫

dDq(q2)i (q − p)2 j q2k(q+ p)2m, (28)

where to regulate the possible divergences originated by the energy component, SDR must
be understood, namely,

dDq = dρq4dωq, (29)

whereD = ρ + ω.
The generating functional for our negative-dimensional integrals is the Gaussian-like

integral

Gc =
∫

dDq exp [−αq2− β(q + p)2− γq2− θ(q+ p)2], (30)

which can be easily integrated to give

Gc = π D/2

λ
ρ/2
1 λ

ω/2
2

exp

(
−αβ
λ1

p2
4

)
exp

[
− (α + γ )(β + θ)

λ2
p2

]
. (31)

There are results given by double, triple, four-fold, and five-fold hypergeometric series
in the variablep2/p2

4 or its inverse.
We will present two such hypergeometric series representations. The first one is a four-

fold series,

J4(i, j, k,m) = C4(i, j, k,m)
∞∑

Xi=0

(−i |X1234)( j +m+ D/2|X34)

X1!X2!X3!X4!

(
p2

p2
4

)X1234

× (−1)X3(1+ j +m+ ρ/2|X3− X12)(−m|X2)

(1+ j + k+m+ D/2|X34)

× (− j − ρ/2|X1− X3)(k+ ω/2|X124)

(1− i − ρ/2|X124)

+ (i ↔ j, k↔ m), (32)
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where

C4(i, j, k,m) = π D/2
(

p2
4

)i
(p2)σc−i (− j | − ρ/2)(− j −m− ρ/2| − k− ω/2)

× (−k|2k+ ω/2)( j + k+m+ D/2+ ω/2| − k− ω/2), (33)

with σc = i + j + k+m+ D/2.
The second is a five-fold hypergeometric series,

J5(i, j, k,m) = C5(i, j, k,m)
∞∑

Xi=0

(−i − j − ρ/2|2X1+ X2345)

X1!X2!X3!X4!X5!

×
(

p2

p2
4

)2X1+X2345 (−1)X5(m+ ω/2|X1345)

(1+ k+m+ ω/2|X145)

× (k+ ω/2|X1245)

(1− j − ρ/2|X135)(1− i − ρ/2|X124)
, (34)

where

C5(i, j, k,m) = π D/2
(

p2
4

)i+ j+ρ/2
(p2)k+m+ω/2(−i |i + j + ρ/2)(− j |i + j + ρ/2)

× (−k|k+m+ ω/2)(−m|k+m+ ω/2)(i + j + ρ| − σc − ρ/2)
× (k+m+ ω| − σc − ω/2). (35)

Observe that the above result is also symmetric in(i ↔ j, k↔ m), which means in the
loop integral,qµ→ qµ + pµ.

Another important point to observe is that the final result must be a sum of linearly
independent hypergeometric series [6, 7]. The above fivefold series,J5, appears only
once whereasJ4 is degenerate since several systems give its two hypergeometric func-
tions. This must never be forgotten if one wants to apply NDIM to more complicated dia-
grams which can in principle generate even more involved hypergeometric series represent-
ations.

Moreover, the above expressions,J4 and J5, are related by direct analytic continua-
tion, since both are convergent for|p2/p2

4| < 1. When one is considering simple hy-
pergeometric function, several formulas are known; on the other hand, for rather com-
plicated hypergeometric series, such as the ones we obtained with four- and fivefold
series, there are very few such formulas. NDIM can fill this gap, since it is the only
method which provides hypergeometric series representations for Feynman loop integrals,
in different kinematical regions, and related by analytic continuation either directly or in-
directly.

The above hypergeometric series (only the series, not the factors!),J4 and J5, can be
written as generalized hypergeometric functions [12] of four and five variables,

F6:0;0;0;0
2:0;0;0;0

[
(−i : 1, 1, 1, 1), ( j +m+ D/2 : 0, 0, 1, 1)(1+ j +m+ ρ/2 :−1,−1, 1, 0)

(1+ j + k+m+ D/2 : 0, 0, 1, 1)

(−m : 0, 1, 0, 0)
(1− i − ρ/2 : 1, 1, 0, 1)

∣∣∣∣ x, x,−x, x,

]
(36)
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and

F3:0;0;0;0;0
3:0;0;0;0;0

[
(−i − j − ρ/2 : 2, 1, 1, 1, 1), (m+ ω/2 : 1, 0, 1, 1, 1)

(1+ k+m+ ω/2 : 1, 0, 0, 1, 1), (1− j − ρ/2 : 1, 0, 1, 0, 1)

(k+ ω/2 : 1, 1, 0, 1, 1)
(1− i − ρ/2 : 1, 1, 0, 1, 0)

∣∣∣∣ x2, x, x, x,−x

]
, (37)

wherex = p2/p2
4.

4. CONCLUSION

The technique of Feynman parametrization can of course be used to perform loop inte-
grals in different gauges but it is very difficult to perform parametric integrals for arbitrary
exponents of propagators. This is not so with NDIM, for carrying loop integrals out with
particular exponents is as easy as dealing with arbitrary ones—besides, one can come
across singularities which depend on them and not on dimensionD. This fact is very
important when studying light-cone gauge Feynman integrals, because one could have to
handle products such as(q+)a[(q − p)+]b, with a andb being negative. NDIM can cal-
culate all of them simultaneously, but if one chooses partial fractioning tricks then he/she
will be forced to carry out each integral separately. Besides usual covariant integrals and
the trickier light-cone gauge ones, NDIM was probed into the Coulomb gauge, where a
procedure—introduced by Leibbrandt and co-workers—calledsplit-dimensional regular-
ization is needed in order to render the energy integrals well-defined.

In this paper, we studied Feynman loop integrals pertaining to three outstanding gauges:
the usual, and more popular, covariant Feynman gauge and two of the trickiest nonco-
variant gauges, the light-cone and the Coulomb ones. Our results are given in terms of
hypergeometric functions and in the dimensional regularization context.
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